LEAGHi INTERNATIONAL CORPORATION

SHORT FORM CATALOG

TABLE OF CONTENTS

Power Distribution
Power Distribution. 1
Product Types and Specifications
Leach Product Types and Specifications 2
Subminiature Relays
1-2 Amps 3
Low level to 10 Amps 4
Low level to 75 Amps 5
Balanced Armature Relays
10-25 Amps 6
Power Contactors
25-100 Amps 7
50-400 Amps 8
50-450 Amps 9
100-700 Amps 10
Time Delay Relays
Time Delay Relay Data 11
10-25 Amps 12
Solid-state Time Delay Relays 13
Power Monitors and Sensors
2-10 Amps 14
Solid State Power Controllers
7.5-150 Amps 15
Additional Capabilities
270 VDC 16

POWER DISTRIBUTION SYSTEMS

Leach International Corporation offers a variety of power distribution configurations from electromechanical power management to fully integrated SSPC power management, including control logic and protection. Designed with LEACH ${ }^{\circledR}$ components, these assemblies satisfy all specific customer program conditions and requirements for both primary and secondary distribution systems.

Key Features and Concepts Include:

- Modular concept
- Reconfigurable design
- Options for simple or complex packaging
- Distributed or integrated architecture
- Ventilated or environmentally sealed assemblies
- Line replaceable
- Advanced electronic control logic that includes:
- Built in Test (BIT)
- Fully re-programmable control logic
- Current sensing
- Circuit protection
- Logic and protection control

AEROCOTS

Key Features:

- Programmable channels, operating modes, and $I^{2} \mathrm{~T}$ trip curves
- Optimized packaging, weight, and footprint
- Communication data buses for control and reporting(ARINC 429, CAN, RS422/485, MIL-STD-1553, Ethernet, etc.)
- Built in test (BIT) reporting
- Architectures to achieve safety and environmental requirements
- Full GUI for development
- 270 Vdc Capability

LEACH PRODUCT TYPES AND SPECIFICATIONS

Product Types:

Subminiature Relays (Low level to 75 Amps)
For decades, LEACH® subminiature relays have set the industry standard for technology and reliability. With their proven high performance in the most demanding applications, they are ideal for critical subsea, shipboard, ground-based, space, and aerospace applications.

Balanced Armature Relays (10 Amps to 25 Amps)
LEACH ${ }^{\circledR}$ balanced armature relays have been used in commercial and military aircraft, trucks, buses, ships, and tanks - applications that call for proven durability, high performance and long life. Several terminal mounting styles, dust-resistant, moisture-resistant and hermetically-sealed enclosures. A variety of operating ratings and characteristics are available.

Power Contactors (25 Amps to 700 Amps)
LEACH ${ }^{\circledR}$ power contactors are available with optional auxiliary contacts in sealed and unsealed models."Smart" programmable contactors and special mounting styles are also available.

Time Delay Relays (150 mAmps to 25 Amps)
LEACH ${ }^{\circledR}$ time delay devices combine the proven capability of industry standard relays with highly reliable hybrid microelectronics timing circuits.

Power Monitors and Sensors (up to 10 Amps)
Designed to meet the requirements of MIL-R-28894, LEACH® power monitors and sensors constantly monitor and protect critical AC or DC circuits.

Solid-state Power Controllers (1 Amp to 220 Amps)
Ideal for applications where reliability is key and size and weight are major concerns; LEACH ${ }^{\circledR}$ SSPCs employ a FET output stage and are constructed using thick-film technology, they are hermetically sealed, and mainly metal enclosures.

Product Specifications:

MIL-PRF-39016

This specification covers relays rated from low level to 2 Amps used primarily in electronic and communication equipment. All relays are Established Reliability (ER), and hermetically-sealed types.

MIL-PRF-6106

This specification establishes general requirements for electromechanical relays with contact ratings from 25 amperes resistive (unless otherwise specified) and upward for use in electrical applications. Auxiliary contacts may be rated at lower currents. Relays covered by this specification are capable of meeting the electrical and environmental requirements when mounted directly to the structure of aircraft, missile, spacecraft, ship, and other primary vehicles or in ground support and shipboard equipment. Other ratings may be as specified.

MIL-PRF-83536

This specification covers the general requirements for electromagnetic, hermetically sealed relays for use in aircraft, missile, spacecraft, ship, and other primary vehicles or in ground support equipment. These relays are designed to operate over the full range from low level to power switching with contact ratings up to 25 amperes alternating current (AC) or direct current (DC).

MIL-PRF-83726

This specification establishes the general requirements for time delay relays that are a combination of hybrid microcircuits, solid state electronics with an integral electromagnetic relay, or solid state output. Relays covered by this specification are intended for use in aerospace and associated ground support electrical and electronic systems and equipment

SUBMINIATURE RELAYS Low level - 10 Amps

SUBMINIATURE RELAYS Low level - 75 Amps

BALANCED ARMATURE RELAYS 10-25 Amps

Leach Series:	9330	9274	9324	9325	9339
Rating:	10 Amps	15 Amps	25 Amps	25 Amps	25 Amps
Contact configuration:	2 PDT	4 PDT	3 PST/NO	3 PST-CO/NO	3 PST/NO w/ 2 Amps, 1 PDT
Designed to:	MIL-PRF-6106	MIL-PRF-6106	MIL-PRF-6106	MIL-PRF-6106	MIL-PRF-6106
Qualified to:	MS24149	MS24568	MS27418	MS27706	MS6106/41
Electrical Data	9330	9274	9324	9325	9339
Contact rating (Amps)					
@ 28 VDC					
Resistive:	10	10	25^{\dagger}	25 **	25
Inductive:	10	10	15^{\dagger}	15	15
Motor:	6	6	$20 \dagger$	20	20
Lamp:	2	3	$10 \dagger$	10 **	10
@ $115 \mathrm{VAC}, 400 \mathrm{~Hz}, 3 \varnothing$	9330	9274	9324	9325	9339
Resistive:	10	15	25^{\dagger}	$25^{* *}$	25
Inductive:	10	10	25^{\dagger}	25 **	25
Motor:	6	8 **	$20 \dagger$	20	20
Lamp:	2	4 **	$10 \dagger$	$10 \dagger \dagger$	$10 \ddagger \ddagger$
@ $115 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}, 30$	9330	9274	9324	9325	9339
Resistive:	6	10	25 †	$25^{* *}$	25
Inductive:	4	6	25^{\dagger}	25 **	25
Motor:	3	4	$12 \dagger$	12	12
Lamp:	1.5	2	$10 \dagger$	10 **	10
Nominal coil voltage(s):	$\begin{gathered} 28 \mathrm{VDC} \\ 115 \mathrm{VAC}, 400 \mathrm{~Hz} \\ 115 \mathrm{VAC}, 60 \mathrm{~Hz} \end{gathered}$	$\begin{gathered} 28 \mathrm{VDC} \\ 115 \mathrm{VAC}, 400 \mathrm{~Hz} \\ 115 \mathrm{VAC}, 60 \mathrm{~Hz} \end{gathered}$	$\begin{gathered} 28 \mathrm{VDC} \\ 115 \mathrm{VAC}, 400 \mathrm{~Hz} \\ 115 \mathrm{VAC}, 60 \mathrm{~Hz} \end{gathered}$	$\begin{gathered} 28 \mathrm{VDC} \\ 115 \mathrm{VAC}, 400 \mathrm{~Hz} \\ 115 \mathrm{VAC}, 60 \mathrm{~Hz} \end{gathered}$	$\begin{gathered} 28 \mathrm{VDC} \\ 115 \mathrm{VAC}, 400 \mathrm{~Hz} \\ 115 \mathrm{VAC}, 60 \mathrm{~Hz} \end{gathered}$
Resistance, Ohms $\pm 10 \%$:	160Ω	92Ω	160Ω	160Ω (each coil)	160Ω
@ $25^{\circ} \mathrm{C}$ for 28 VDC					
Operate time, max. (ms)	9330	9274	9324	9325	9339
DC Coil:	20	25	20	20	20
AC Coil:	20	25	20	20	25
Release time, max. (ms)					
DC Coil:	20	20	10	10	10
AC Coil:	50	50	50	50	50
Bounce time, max. (ms):	2	N/O 3, N/C 5	2	5	2 Aux. 4
Environmental Data	9330	9274	9324	9325	9339
Sinusoidal vibration (g):	10 @ $15-1500 \mathrm{~Hz}$	10 @ 1000-2000 Hz	10 $@ 55-1500 \mathrm{~Hz}$	10 $@ 55-1500 \mathrm{~Hz}$	10 @ $55-1500 \mathrm{~Hz}$
Shock (g):	25	50	50	25	50
Temperature range	$-70^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				
Mechanical Data	9330	9274	9324	9325	9339
Weight, max. (oz./lbs.):	7.04 oz .	12.80 oz .	10.56 oz.	22.7 oz .	7.04 oz .
Dimensions, max. (in.):	$2.50 \times 1.625 \times 2.60$	$2.062 \times 2.062 \times 1.807$	$1.531 \times 1.531 \times 1.680$	$3.54 \times 3.00 \times 3.20$	$1.531 \times 1.531 \times 1.680$
($\mathrm{L} \times \mathrm{W} \times \mathrm{H}$)					
Option(s) available:	Suppressed DC coil				

* Max. temp. limited to $+85^{\circ} \mathrm{C}$.
** Value exceeds Mil-Spec.
$\dagger 440$ VAC 60 Hz delta rating, 3.5 amp resistive.
$\dagger \dagger 25$ amp resistive load transfer rating.
$\ddagger \ddagger$ Aux. ratings 2 amp resistive, lamp inductive, 0.5 amp lamp.
* $1 \mathrm{NO}+1 \mathrm{NC}$ auxiliary contact ${ }^{* *} \pm 20 \%$ @ $25^{\circ} \mathrm{C} \dagger 2$ PDT auxiliary contact. May be associated with a Hall current sensor

AC/DC POWER CONTACTORS 25-100 Amps

Leach Series:	9123	9213	9207	9124
Rating:	25 Amps	25-100 Amps	25-100 Amps	50 Amps
Contact configuration:	3 PST/NO DM	3 PST/NO, 4 PST/NO 2 P/NO, 2 P/NC DB-DM	3 PST/NO DM, 2P/NO, 2P/NC DB-DM	3 PST/NO DB
Designed to:	MIL-PRF-6106	MIL-PRF-6106	MIL-PRF-6106	MIL-PRF-6106
Qualified to:	MS27997		DESC Spec 84192	MS27222
Electrical Data	9123	9213	9207	9124
Contact rating (Amps)				
@ 28 VDC				
Resistive:	25	25-100 *	25-100 *	50
Inductive:	25	25-100 *	25-100 *	50
Motor:	25	25-100 *	25-100 *	50
Lamp:				
@ 115 VAC, $400 \mathrm{~Hz}, 30$	9123	9213	9207	9124
Resistive:	25	25-100 *	25-100 *	50
Inductive:	25	25-100 *	25-100 *	50
Motor:	25	25-100 *	25-100 *	50
Lamp:				
@ $115 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}, 3 \varnothing$	9123	9213	9207	9124
Resistive:	15	50 *	50 *	30
Inductive:	15	50 *	50 *	30
Motor:	7	50 *	50 *	15
Lamp:				
Nominal coil voltage(s):	$\begin{gathered} 28 \mathrm{VDC} \\ 115 \mathrm{VAC}, 400 \mathrm{~Hz} \\ 115 \mathrm{VAC}, 60 \mathrm{~Hz} \end{gathered}$	$\begin{gathered} 28 \text { VDC } \\ 115 \text { VAC, } 400 \mathrm{~Hz} \\ 115 \mathrm{VAC}, 60 \mathrm{~Hz} \end{gathered}$	$\begin{gathered} 28 \mathrm{VDC} \\ 115 \mathrm{VAC}, 400 \mathrm{~Hz} \\ 115 \mathrm{VAC}, 60 \mathrm{~Hz} \end{gathered}$	$\begin{gathered} 28 \mathrm{VDC} \\ 115 \mathrm{VAC}, 400 \mathrm{~Hz} \\ 115 \mathrm{VAC}, 60 \mathrm{~Hz} \end{gathered}$
Resistance, Ohms $\pm 10 \%$:	50Ω	44.5Ω	44.5Ω	50Ω
@ $25^{\circ} \mathrm{C}$ for 28 VDC	9123	9213	9207	9124
Operate time, max. (ms)				
DC Coil:	25	30	30	25
AC Coil:	30	40	40	30
Release time, max. (ms)				
DC Coil:	10	20	20	10
AC Coil:	50	60	50	50
Bounce time, max. (ms):	2	10	10	2
Environmental Data	9123	9213	9207	9124
Sinusoidal vibration (g):	15 @ $55-1500 \mathrm{~Hz}$	10 $@ 55-1500 \mathrm{~Hz}$	10 $@ 55-1500 \mathrm{~Hz}$	15 $@ 55-1500 \mathrm{~Hz}$
Shock (g):	50	50	50	50
Temperature range	$-70^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+71^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-70^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Mechanical Data	9123	9213	9207	9124
Weight, max. (oz./lbs.):	20 oz .	44.8 oz.	28 oz .	20 oz .
Dimensions, max. (in.): (LxWxH)	$3.73 \times 3.305 \times 2.50$	$4.22 \times 4.23 \times 4.53$	$3.63 \times 3.62 \times 2.875$	$3.73 \times 3.305 \times 2.50$
Option(s) available:	Auxiliary 5 Amp contacts 440 VAC 60 Hz delta rating	Auxiliary 5-25 Amp contacts	Auxiliary 5-25 Amp contacts	Auxiliary 5 Amp contacts 440 VAC 60 Hz delta rating

[^0]
AC/DC POWER CONTACTORS 50-400 Amps

Leach Series:	HC Center-off	7064, 7264, 7401	H, HD, HP, HT, HTD, HPT ††	HL, HLT \ddagger
Rating:	50 Amps	50-400 Amps	60 Amps	60 Amps
Contact configuration:	$\begin{aligned} & 3 \text { PST-NO } \\ & 1 \text { PST-NO DM } \end{aligned}$	1 PST/NO	3 PST, 3 PDT, 1 PDT-DB-DM	3 PST, 3 PDT, 1 PDT-DB-DM
Style:			Magnetic latch	Magnetic latch
Designed to:	MIL-PRF-6106	MIL-PRF-6106	MIL-PRF-6106	MIL-PRF-6106
Qualified to:	MS27750	$\begin{gathered} \text { MS24166 } \\ \text { MS24171/72 } \\ \text { MS24178/79 } \\ \text { MS24185 } \end{gathered}$	$\begin{gathered} \text { MS27751 } \\ \text { M6106/26 and } 43 \end{gathered}$	MS27749
Electrical Data	HC Center-off	7064, 7264, 7401	H, HD, HP, HT, HTD, HPT ††	HL, HLT \ddagger
Contact rating (Amps)				
@ 28 VDC				
Resistive:	25	50-400	50	50
Inductive:	15	50-100	20	20
Motor:	15	50-400	20	20
Lamp:	10		10	10
@ $115 \mathrm{VAC}, 400 \mathrm{~Hz}, 3 \varnothing$	HC Center-off	7064, 7264, 7401	H, HD, HP, HT, HTD, HPT ††	HL, HLT \ddagger
Resistive:	50		60	60
Inductive:	50 **		60	60
Motor:	30		40	40
Lamp:	15		15	15
@ $115 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}, 3 \varnothing$	HC Center-off	7064, 7264, 7401	H, HD, HP, HT, HTD, HPT ††	HL, HLT \ddagger
Resistive:	30		30	30
Inductive:	30		30	30
Motor:	30		30	30
Lamp:				
Nominal coil voltage(s):	$\begin{gathered} \text { 6, 12, } 28 \mathrm{VDC} \\ 115 \mathrm{VAC}, 400 \mathrm{~Hz} \\ 115 \mathrm{VAC}, 60 \mathrm{~Hz} \end{gathered}$	28 VDC	$\begin{gathered} \text { 6, 12, } 28 \text { VDC } \\ 115 \mathrm{VAC}, 400 \mathrm{~Hz} \\ 115 \mathrm{VAC}, 60 \mathrm{~Hz} \end{gathered}$	$\begin{gathered} \text { 6, 12, } 28 \mathrm{VDC} \\ 115 \mathrm{VAC}, 400 \mathrm{~Hz} \\ 115 \mathrm{VAC}, 60 \mathrm{~Hz} \end{gathered}$
Resistance, Ohms $\pm 10 \%$ @ $25^{\circ} \mathrm{C}$ for 28 VDC :	$\begin{gathered} 6 \text { VDC, } 12 \Omega ; 12 \text { VDC, } 50 \Omega ; \\ 28 \text { VDC, } 200 \Omega \dagger \\ 115 \text { VAC, } 100 \text { Amp } \end{gathered}$	$6 \mathrm{VDC}, 12 \Omega ; 12 \mathrm{VDC}, 50 \Omega$;	$\begin{gathered} 6 \text { VDC, } 12 \Omega ; 12 \mathrm{VDC}, 50 \Omega ; \\ 28 \mathrm{VDC}, 200 \Omega ; \\ 115 \mathrm{VAC}, .090 \mathrm{Amp} \end{gathered}$	$\begin{gathered} 6 \text { VDC, } 12 \Omega ; 12 \text { VDC, } 50 \Omega ; \\ 28 \mathrm{VDC}, 200 \Omega \end{gathered}$
Operate time, max. (ms)	HC Center-off	7064, 7264, 7401	H, HD, HP, HT, HTD, HPT ††	HL, HLT \ddagger
DC Coil:	35		50	35
AC Coil:	35	40	50	35
Release time, max. (ms)				
DC Coil:	25		25	
AC Coil:	80	15	80	
Bounce time, max. (ms):	3		3	3
Environmental Data	HC Center-off	7064, 7264, 7401	H, HD, HP, HT, HTD, HPT ††	HL, HLT \ddagger
Sinusoidal vibration (g):	10 @ 70-1000 Hz	2 @ 55-500 Hz	10 @ 70-1000 Hz	10 @ 70-1000 Hz
Shock (g):	50	25	50	50
Temperature range	$-55^{\circ} \mathrm{C}$ to $+71^{\circ} \mathrm{C}$			
Mechanical Data	HC Center-off	7064, 7264, 7401	H, HD, HP, HT, HTD, HPT †t	HL, HLT \ddagger
Weight, max. (oz./lbs.):	15 oz .	. $59-2.6 \mathrm{lbs}$.	14 oz .	15 oz .
Dimensions, max. (in.): ($\mathrm{L} \times \mathrm{W} \times \mathrm{H}$)	$\begin{gathered} 2.50 \text { diameter } \times 3.13 \\ 4.41 \times 2.0 \times 3.75 \end{gathered}$	$2.76 \times 2.1 \times 2.56$	2.50 diameter $\times 3.13$	2.50 diameter $\times 3.13$
Option(s) available:	Gasket sealed models	Special units upon request	Auxiliary 5 Amp contacts	Auxiliary 5 Amp contacts

AC/DC POWER CONTACTORS 50-450 Amps

Leach Series:	W, WC, WL	A, AJ	Busbar Series - HB, ZB, WB	Plug-in Series	Modcon Series
Rating:	250-275 Amps	300-400 Amps	60-275 Amps	60 Amps	50, 90, 175, 350, 450 Amps
Contact configuration(s):	1 PDT-DM-DB, 3 PST/NO 1 PST/NO-DM, 1 PST/NC-DB	1 PST/NO DM	3 PST/NO	3 PST/NO	3 PST/NO 3 PDT
Style:	Non-latch, latch	Non-latch	Non-latch	Non-latch	Non-latch
Designed to:	MIL-PRF-6106	MIL-PRF-6106	MIL-PRF-6106	MIL-PRF-6106	MIL-PRF-6106
Qualified to:		M6106/33			
Electrical Data	W, WC, WL	A, AJ	Busbar Series	Plug-in Series	Modcon Series
Contact rating (Amps)					
@ 28 VDC					
Resistive:	125	300/400			
Inductive:	75	100/150			
Motor:	75	250/250			
Lamp:					
@ 115/200 VAC, $400 \mathrm{~Hz}, 30$	W, WC, WL	A, AJ	Busbar Series	Plug-in Series	Modcon Series
Resistive:	275		50 to 275	60	50 to 350
Inductive:	275		50 to 275		
Motor:	175				
Lamp:					
@ $115 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ د	W, WC, WL	A, AJ	Busbar Series	Plug-in Series	Modcon Series
Resistive:					
Inductive:					
Motor:					
Lamp:					
Nominal coil voltage(s):	$\begin{gathered} 28 \mathrm{VDC} \\ 115 \mathrm{VAC}, 400 \mathrm{~Hz} \text { (W/WC) } \\ 28 \text { VDC Suppressed (W/WC) } \end{gathered}$	6, 12, 28 VDC	28 VDC	28 VDC	28 VDC
Resistance, Ohms $\pm 10 \%$ @ $25^{\circ} \mathrm{C}$ for 28 VDC :	(W) $90 \Omega ;$ (WL) 9.8Ω (WC) $100 \Omega^{*}$	$\begin{gathered} 6 \text { VDC, } 4 \Omega ; 12 \text { VDC, } 15 \Omega ; \\ 28 \text { VDC, } 60 \Omega \end{gathered}$			
Operate time, max. (ms)	W, WC, WL	A, AJ	Busbar Series	Plug-in Series	Modcon Series
DC Coil:	60	35	12 to 30	50	30
AC Coil:	60				
Release time, max. (ms)					
DC Coil:	40	15	10 to 15	20	30
AC Coil:	125				
Bounce time, max. (ms):	4	4	4	3	2
Environmental Data	W, WC, WL	A, AJ	Busbar Series	Plug-in Series	Modcon Series
Sinusoidal vibration (g):	10 @ 60-2000 Hz	$\begin{aligned} & 10 @ 70-500 \mathrm{~Hz} \\ & 5 @ 500-2000 \mathrm{~Hz} \end{aligned}$	$\begin{gathered} 10 @ \\ 5-2000 \mathrm{~Hz} \end{gathered}$	$\ddagger \ddagger \ddagger \ddagger$	$\ddagger \ddagger \ddagger \ddagger$
Shock (g):	20	25	20	30	15
Temperature range	$-55^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+71^{\circ} \mathrm{C}$	$-54^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-15^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Mechanical Data	W, WC, WL	A, AJ	Busbar Series	Plug-in Series	Modcon Series
Weight, max. (oz./lbs.):	4.5 lbs .	1.75 lbs .	Up to 2.0 lbs .	Up to 4.37 lbs .	0.5 lbs . to 2.7 lbs .
Dimensions, max. (in.): (Lx W x H)	$4.625 \times 5.56 \times 4.10$	$3.90 \times 3.64 \times 2.80$	$\begin{gathered} \text { 4.50in } \times 3.67 \text { in } \times 2.94 \text { in } \\ M a x \end{gathered}$	$\begin{gathered} 4.43 \times 4.43 \times 5.0 \\ \operatorname{Max} \end{gathered}$	$\begin{gathered} 3.51 \times 2.46 \times 2.36 \\ \text { Max } \end{gathered}$
Option(s) available:	Auxiliary 8 Amp contacts Magnetic latch ** Center-off versions \dagger, GFI (W)	Auxiliary 5 Amp contacts	Auxiliary 2 Amp contact Dust proof enclosure Gasket Sealed	Auxiliary 5 Amp contacts Smart electronics Dust proof enclosure Gasket Sealed	Dust proof enclosure Gasket Sealed

[^1]
AC/DC POWER CONTACTORS 100-700 Amps

${ }^{*} 1 \mathrm{NO}+1 \mathrm{NC}$ auxiliary contact ${ }^{* *} \pm 20 \%$ @ $25^{\circ} \mathrm{C}$. May be associated with a Hall current sensor
\dagger P/N ending by 7: no auxiliary contact. P/N ending by 6 and $9: 1 \mathrm{NO}+1 \mathrm{NC}$ aux contacts. P / N ending by $8: 2 \mathrm{NO}+2 \mathrm{NC}$ aux contacts

TIME DELAY RELAY DATA

Specifying a Fixed Time Delay Period

Leach International Corporation and the military identify the time delay period in the same manner. A four-digit dash number specifies the delay period in milliseconds. The first three numbers are significant figures while the fourth indicates the number of zeros to follow the first three.

$$
\begin{aligned}
& \text { Examples: }-1001=1,000 \text { milliseconds }(1 \text { second) } \\
&-2502=25,000 \text { milliseconds }(25 \text { seconds) } \\
&-5000=500 \text { milliseconds }(0.5 \text { second })
\end{aligned}
$$

In the case of a repeat cycle timer (flasher), a similar method is used. The dash number indicates length of each cycle. (Note: each cycle is 50% on, 50% off).
Examples: $-2500=250$ milliseconds cycle or 4 cycles $/ \mathrm{sec}$.
$-1001=1,000$ milliseconds cycle or $1 \mathrm{cycle} / \mathrm{sec}$.
$-6002=60,000$ milliseconds cycle or 1 cycle/min.

Use and Selection of Adjustable Timers

Adjustable timers are useful in system prototyping or breadboard circuits where the precise time delay period is unknown. By the use of an external resistor, these devices are adjustable over a specific "decade range." Although any decade range within the overall timing range can be supplied, the following ranges are offered as standards:
0.1 to 1 second (Specify -1001)
1.0 to 10 seconds (Specify -1002)

5 to 50 seconds (Specify -5002)
50 to 500 seconds (Specify -5003)

Note from above that in specifying a decade range, the four-digit dash number indicates the high or upper limit of the desired decade range. The formula below provides the proper resistance value to achieve the desired time delay:

$$
\mathbf{R}_{\text {ext }}=\left(\frac{\mathrm{T}_{1}}{\mathrm{~T}_{0}}-1\right) \quad 100,000 \text { Ohms } \quad \begin{array}{r}
\text { Where: } \\
\mathbf{R}_{\text {ext }}=\text { External resistance value (Ohms) } \\
\mathrm{T}_{1}=\text { Desired time in seconds } \\
\mathrm{T}_{0}=\text { Minimum time (low end of the decade range) in seconds }
\end{array}
$$

For example, if a 30 -second delay is desired and a 5 - to 50 -second adjustable timer is being used, the calculation is:

$$
\mathbf{R}_{\mathrm{ext}}=\left(\frac{30}{5}-1\right) \quad 100,000 \text { Ohms or } \mathbf{R}_{\mathrm{ext}}=500 \mathrm{~K} \text { Ohms }
$$

Recommended resistors IAW MIL-R-55182 1⁄8 WATT, 1\% (RNC6OHXXXXFS).

Military Part Numbering Method

Military Part Number	Leach Part Number	Operation Mode	Output	Time Range (seconds)
M83726/20	TD-1435	Delay on operate - fixed time	250MA, SPST	0.05-500
M83726/21	TD-1436	Delay on operate - adjustable**	250MA, SPST	0.05-500
M83726/22	TD-1412	Repeat cycle timer (flasher)	250MA, SPST	1-600 cycles/min. ${ }^{\dagger} \dagger$
M83726/23	TD-1505	"True" delay on release - fixed \dagger	10A, 4PDT	0.1-75
M83726/24	TDH-1609	Delay on operate - fixed time	150MA, SPST	0.05-500
M83726/25	TDH-1610	Delay on release - fixed time	150MA, SPST	0.05-500
M83726/28	TDH-8050/8051	Delay on operate - fixed time	10A, 2PDT	0.1-600 \ddagger
M83726/29	TDH-8070/8071	Delay on release - fixed time	10A, 2PDT	0.1-600 \ddagger
M83726/30	TDH-8060/8061	Delay on operate - adjustable	10A, 2PDT	0.1-600 \ddagger
M83726/31	TDH-8080/8081	Delay on release - adjustable	10A, 2PDT	0.1-600 \ddagger

[^2]
TIME DELAY RELAYS 10-25 Amps

Leach Series:	TDH-6000	TDH-800	TDH-7000	T531
On operate, fixed time:	TDH-6050/51	TDH-8050/51	TDH-7050/51	T531
On operate, adjustable:	TDH-6060/61	TDH-8060/61	TDH-7060/61	T531
On release, fixed time:	TDH-6070/71	TDH-8070/71	TDH-7070/71	T531
On release, adjustable:		TDH-8080/81		T531
Repeat cycle timer (flasher):				
Designed to:		MIL-PRF-83726	MIL-PRF-83726	
Qualified to:		M83726/28, 29, 30, 31		
Electrical Data	TDH-6000	TDH-8000	TDH-7000	T531
Contact rating (resistive):	10 Amps	10 Amps	10 Amps	25 Amps
Contact form:	2 PDT	2 PDT	4 PDT	3 PDT
Timing range (seconds):	0.1-600	0.1-600	0.1-600	0.1-1000
Accuracy (percentage) *:	± 10	± 10	± 10	± 3 to ± 10
Recycle time, max. (ms) **:	50	50	50	≤ 50
Input \& control voltage:	20-30 VDC	20-30 VDC	20-30 VDC	18-32 VDC
Operating current, max.:	150 mAmps	150 mAmps	150 mAmps	
Control current, max.:				
EMI per MIL-STD-461 \dagger :	Class 1D	Class 1D	Class 1D	
Dielectric strength, Vrms				
Sea level:	$1000 / 60 \mathrm{~Hz}$	$1000 / 60 \mathrm{~Hz}$	$1000 / 60 \mathrm{~Hz}$	$500 / 50 \mathrm{~Hz}$
80,000 ft.:	$350 / 60 \mathrm{~Hz}$	$350 / 60 \mathrm{~Hz}$	$350 / 60 \mathrm{~Hz}$	$250 / 50 \mathrm{~Hz}$
Insulation resistance megohms:	1000 @ 500 VDC \ddagger	1000 @ 500 VDC \ddagger	1000 @ 500 VDC \ddagger	≥ 500 @ 500 VDC
Environmental Data	TDH-6000	TDH-8000	TDH-7000	T531
Operating temperature $\left({ }^{\circ} \mathrm{C}\right)$:	-55 to +125	-55 to +125	-55 to +125	-55 to +125
Vibration				
Sine (G):	20	30	20	$20 / 10-2000 \mathrm{~Hz}$
Random ($\mathrm{G}^{2} / \mathrm{Hz}$):	0.2	0.4	0.2	
Shock (g):	100	100	100	100/6 ms
Acceleration (g):	20	15	20	
Seal:	Hermetic	Hermetic	Hermetic	Hermetic
Mechanical Data	TDH-6000	TDH-8000	TDH-7000	T531
Weight, max. (oz./lbs.):	1.9 oz . (54 g.)	2.5 oz. (71 g.)	3.0 oz. (85 g.)	4.233 oz. (120 g.)
Dimensions, max. (in.): (LxWxH)	$1.025 \times 5.25 \times 1.520$	$1.025 \times 1.025 \times 1.010$	$1.025 \times 1.025 \times 1.50$	$1.73 \times 1.54 \times 1.02$
Mating socket P/N:	SO-1055-8693	SO-1043-8308	SO-1056-8691	S502, SF502
Terminal types t :	$\begin{aligned} & \text { TDH-60X0=PI } \\ & \text { TDH-60X1=SH } \end{aligned}$	$\begin{aligned} & \text { TDH-80X0=PI } \\ & \text { TDH-80X1=SH } \end{aligned}$	$\begin{aligned} & \text { TDH-70X0=PI } \\ & \text { TDH-70X1=SH } \end{aligned}$	PI, SH

* The accuracy specification applies to any combination of temperature and voltage. For units with a timing range less than 1 second, add ± 10 milliseconds to the $\pm 10 \%$ tolerance.
** Recycle time is that action which must occur to assure a new timing cycle can be completed within tolerance:
A. TD on operate-Remove power from input terminals for the period specified.
B. TD on release-Apply power to the control terminal for the period specified.
C. "True" TD on release-Apply power to the input terminals for the period specified.
\dagger EMI test limits will not be exceeded during the timing interval or when continuously energized under steady state conditions, per paragraph 3.23, MLL-PRF-83726A.
$\dagger \dagger$ Definition of terminal type codes:
$\mathrm{Pl}=$ Plug-in type for use with mating relay socket.
SH = Tinned solder hook terminals for direct hard wiring.
PC = Tinned straight pins for printed circuit board insertion.
TM = Compatible with M12883/52 socket module and M12883/53 mounting track.
\ddagger Terminals X 1 and X 2 must be connected together during the test. Dielectric withstanding voltage and insulation resistance are measured between all mutually insulated terminals and between all terminals and case.
$\ddagger \ddagger$ Not available for new design; commercially available.

SOLID-STATE TIME DELAY RELAYS $150-250 \mathrm{mAmps}$

				Programmable
Leach Series:	TDH-1609, TDH-1610	TD-1435, TD-1436	TD-1412łt \ddagger	FLSH402
On operate, fixed time:	TDH-1609	TD-1435		FLSH402
On operate, adjustable:		TD-1436		FLSH402
On release, fixed time:	TDH-1610			FLSH402
On release, adjustable:				FLSH402
Repeat cycle timer (flasher):			TD-1412	FLSH402
Designed to:	MIL-PRF-83726	MIL-PRF-83726	MIL-PRF-83726	
Qualified to:	M83726/24, 25	M83726/20, 21	M83726/22	
Electrical Data	TDH-1609, TDH-1610	TD-1435, TD-1436	TD-1412	FLSH402
Contact rating (resistive):	150 mAmps	250 mAmps	250 mAmps $\ddagger \ddagger$	250 mAmps
Contact form:	SPST	SPST	SPST	2 SSO
Timing range (seconds):	0.05-500	0.05-500	1 cycle/min. to 10 cycles/second	0.1-625
Accuracy (percentage) *:	± 10	± 10	± 10	± 3 to ± 10
Recycle time, max. (ms) **:	10	10	10	≤ 20
Input \& control voltage:	20-32 VDC	18-32 VDC	18-32 VDC	18-32 VDC
Operating current, max.:	10 mAmps	$5 \mathrm{mAmps}+$ load	$5 \mathrm{mAmps}+$ load	
Control current, max.:				5 mAmps @ 28 VDC
EMI per MIL-STD-461 \dagger :	Class 1D	Class 1D	Class 1D	
Dielectric strength, Vrms				
Sea level:	$1000 / 60 \mathrm{~Hz}$	$1000 / 60 \mathrm{~Hz}$	$1000 / 60 \mathrm{~Hz}$	$750 / 50 \mathrm{~Hz}$
80,000 ft.:		$350 / 60 \mathrm{~Hz}$	$350 / 60 \mathrm{~Hz}$	
Insulation resistance megohms:	1000 @ 500 VDC \ddagger	1000 @ 500 VDC \ddagger	1000 @ 500 VDC \ddagger	≥ 100 @ 100 VDC
Environmental Data	TDH-1609, TDH-1610	TD-1435, TD-1436	TD-1412	FLSH402
Operating temperature (${ }^{\circ} \mathrm{C}$):	-55 to +125	-55 to +125	-55 to +125	-55 to +125
Vibration				
Sine (G):	20	30	30	$30 / 70-2000 \mathrm{~Hz}$
Random ($\mathrm{G}^{2} / \mathrm{Hz}$):				
Shock (g):	1100	1100	1100	50/11 ms
Acceleration (g):	100	100	100	
Seal:	Hermetic	Hermetic	Hermetic	Hermetic
Mechanical Data	TDH-1609, TDH-1610	TD-1435, TD-1436	TD-1412	FLSH402
Weight, max. (oz./lbs.):	. 56 oz . (16g.)	0.5 oz. (14 g.)	0.5 oz. (14 g.)	0.353 oz . (10 g.)
Dimensions, max. (in.): (LxWxH)	. $810 \times .410 \times .640$. $810 \times .410 \times .310$. $810 \times .410 \times .310$	$0.91 \times 0.91 \times 0.24$
Mating socket P / N :	See note $\dagger \dagger$			
Terminal types $\dagger \dagger$:	TM	SH, PC	SH, PC	PI

* The accuracy specification applies to any combination of temperature and voltage. For units with a timing range less than 1 second, add ± 10 milliseconds to the $\pm 10 \%$ tolerance.
** Recycle time is that action which must occur to assure a new timing cycle can be completed within tolerance:
A. TD on operate-Remove power from input terminals for the period specified.
B. TD on release-Apply power to the control terminal for the period specified.
C. "True" TD on release-Apply power to the input terminals for the period specified.
\dagger EMI test limits will not be exceeded during the timing interval or when continuously energized under steady state conditions, per paragraph 3.23, MLL-PRF-83726A.
†† Definition of terminal type codes:
PI = Plug-in type for use with mating relay socket.
SH = Tinned solder hook terminals for direct hard wiring.
PC = Tinned straight pins for printed circuit board insertion.
TM = Compatible with M12883/52 socket module and M12883/53 mounting track.
\ddagger Terminals X1 and X2 must be connected together during the test. Dielectric withstanding voltage and insulation resistance are measured between all mutually insulated terminals and between all terminals and case.
$\ddagger \ddagger$ Output rating equivalent of two MS25237-387 IAmps in parallel.
$\ddagger \ddagger \ddagger$ Not available for new design; commercially available.

POWER MONITORS AND SENSORS 2-10 Amps

Leach Series:	V610	V 110	V 210, V 310	F410	P510	CS 400, CS 500
Description:	AC Power Monitor	DC Voltage Sensor	AC Under or Over Voltage Sensor	Frequency Sensor	Phase Sequence Sensor	Current Sensing Relay
Operational Data	V 610	V 110	V 210, V 310	F410	P510	CS 400, CS 500
Input Supply:	$\begin{gathered} 90-150 \text { VRMS } \\ \text { 180-240 VRMS } \\ 44-450 \mathrm{~Hz} \\ 30,4 \text { wire } \end{gathered}$	19.5-30 VDC	$\begin{gathered} 90-150 \text { VRMS } \\ \text { 180-240 VRMS } \\ 50-450 \mathrm{~Hz} \\ 30,4 \text { wire } \end{gathered}$	$\begin{gathered} 80-150 \text { VRMS } \\ 160-240 \text { VRMS } \\ 40-480 \mathrm{~Hz} \\ 30,4 \text { wire } \end{gathered}$	90-150 VRMS 180-240 VRMS $44-450 \mathrm{~Hz}$ $3 \varnothing, 4$ wire	18-32 VDC
Sensed voltage:		1-50 VDC				
Sensing Functions:	Trip point ranges Under voltage: 90-130 VRMS, $\pm 2 \%$ $180-220$ VRMS, $\pm 2 \%$ Over voltage: $110-150$ VRMS, $\pm 2 \%$ 200-240 VRMS, $\pm 2 \%$ Under frequency: $44-58 \mathrm{~Hz}, \pm 2 \%$ $350-390 \mathrm{~Hz}, \pm 2 \%$ Over frequency: $55-62 \mathrm{~Hz}, \pm 2 \%$ $410-450 \mathrm{~Hz}, \pm 2 \%$ Phase rotation ABC Time delay: $.05-10$ sec., $\pm 10 \%$	Energize above, de-energize below selected trip point: $1-50$ VDC, $\pm 2 \%$	Selected trip point within: 90-130 VRMS or $180-230$ VRMS, $\pm 2 \%$	Energize above, de-energize below selected trip point: $320-480 \mathrm{~Hz}, \pm 2 \%$ Senses any one line to neutral	Energize when phase sequence is ABC . De-energize for all other sequences, open neutral or loss of voltage	Sensing range: 0.8-49 Amps Min. pickup: Max. pickup: 5.5-49 Amps Min. dropout: 0.08-. 8 Amps Min. delta: 0.16-1.6 Amps Max. delta: 4-31 Amps
Output contacts: *	2 PDT, 10 Amps or 3 PDT, 10 Amps	10 Amps 2 PDT or 4 PDT	2 Amps 2 PDT			
Environmental Data	V610	V 110	V 210, V 310	F410	P510	CS 400, CS 500
Operating temperature (${ }^{\circ} \mathrm{C}$):	-55 to +125					
Thermal shock (MIL-STD-202):	Method 107					
Vibration (MIL-STD-202):	Method 204 **	$15 \mathrm{~g} .770-3000 \mathrm{~Hz}$				
Random:	Method $214 \dagger$	Method 214 †	Method $214 \dagger$	Method $214 \dagger$	Method $214 \dagger$	
Shock (MIL-STD-202):	Method 213 † \dagger	50G/11 ms				
Acceleration (MLL-STD-202):	Method 212					
Seal:	Hermetic (potted)	Potted	Potted	Potted	Potted	Hermetic
Mechanical Data	V 610	V 110	V 210, V 310	F410	P510	CS 400, CS 500
Weight, max. (oz./grams):	27 oz. (767 g.)	$10 \mathrm{oz}$. (284 g.)	$10 \mathrm{oz}$. (284 g.)	$10 \mathrm{oz}$. (284 g.)	10 oz (284 g.$)$	2.469 oz. (70 g.)
Dimensions, max. (in.): (LxW x H)	$2.31 \times 2.18 \times 3.2 \ddagger$	$1.531 \times 1.531 \times 2.34$	$1.73 \times 1.01 \times 1.02$			
Finish:	Electro tin, type $1 \ddagger \ddagger$	Corrosion resistant				
Engineering Data	V 610	V 110	V 210, V 310	F410	P510	CS 400, CS 500
Insulation resistance:	100 M Ohms	100 M Ohms	100 M Ohms *	100 M Ohms	100 M Ohms *	>100 M Ohms @ 50VDC
Dielectric strength (MIL-STD-202):	Method 301	1000 VRMS/50 Hz.				
Voltage strength (MIL-STD-202):	Method 301					
Voltage transients (MIL-STD-704):	Category B					
Operating current						
AC sensors, max. (mAmps):	75 per phase					
DC sensors, max. (mAmps):	175	175	175	175	175	
EMI (MIL-STD-461):	Class 1D					
Life test						
High level (cycles, min.):	100,000	100,000	100,000	100,000	100,000	
Low level (cycles, min.):	100,000	100,000 **	100,000	100,000 **	100,000 *	

*Ratings shown are resistive loads @ 28 VDC, 115 VAC 400 Hz and $115 / 200 \mathrm{VAC} 400 \mathrm{~Hz}$. **Condition D, except $5-2000 \mathrm{~Hz}$ frequency. †Test condition IG; 15 min ./plane. $\dagger \dagger$ Test condition A (50G) \ddagger Solder hook or circular MIL connector. $\ddagger \ddagger$ Per MIL-T-10727. $*$ Minimum intial test; 50 M Ohms after test. $*$ Plus 400,000 cycles mechanical life.

SOLID STATE POWER CONTROLLERS

[^3]
ADDITIONAL CAPABILITIES

High Voltage DC Contactors

Utilizes conventional contactors with a proprietary active arc suppression. Shorter arc period, lower contact erosion, higher number of cycles. Flexible architecture up to 1000A can be used at 270VDC, 540VDC, and beyond.

270 Vdc Solid-State Power Controllers

Next generation Solid-State Power Controllers leveraging state of the art technologies. Ideal for a variety of aerospace, military and transportation applications.

DC Current Sensor Series

A Hall Effect current sensor with galvanic isolation designed to measure DC current, and certified for aerospace applications. The output provides a bidirectional linear voltage signal indicating measured current.

AC Smart Module

The AC Smart Module is fit for commercial and military aerospace power distribution systems. It can be used as a remote control circuit breaker when interfaced with a power contactor. It also has a dedicated load monitoring and protection function. Can be utilized to provide precision differential protection.

Business Jet Thrust Reverser Control Unit

Controls operation of the thrust reverser in response to pilot command and sensor inputs. The TRCU operates the hydraulic control valves that run the thrust reverser while providing monitoring via communication bus.

Solid State Relay

Featuring a solid state solution housed in a hermetically sealed 1 inch cube. The solid-state relay incorporates the overcurrent protection function of a circuit breaker and capable of switching 30 Amps (resistive load) at 28 Vdc .

LEABIP INTERNATIONAL CORPORATION

Find your local Sales Representative
www.leachcorp.com
Applications and Technical Support
lina.information@leachcorp.com

FAA Repair Station Number FJ3D503L

Repair Station Contact: MSCGroup@leachcorp.com
6900 Orangethorpe Avenue
Buena Park, CA 90620
(714) 736-7598

in

[^0]: * 440 VAC 60 Hz wye/delta rated. Sealed rotary, 1, 2, 3 and 4 pole.
 * 1NO + 1NC auxiliary contact
 ${ }^{* *} \pm 20 \% @ 25^{\circ} \mathrm{C} \dagger 2$ PDT auxiliary contact. May be associated with a Hall current sensor

[^1]: ${ }^{*} \pm 20 \%$ @ $25^{\circ} \mathrm{C}$ **WL model \dagger WC model $\dagger^{\dagger} \mathrm{Z}$ model \ddagger Current sensing with remote control capability ${ }^{\ddagger \ddagger}$ Shor-time rated for starting loads. ${ }^{\ddagger \ddagger \ddagger \ddagger \text { Contact factory for detailed information }}$

[^2]: ** All adjustable timers use external resistor (not supplied) to adjust timing range.
 \dagger "True" time delay on release requires no external power during timing period.
 $\dagger \dagger$ Each cycle is 50% on, 50% off.
 \ddagger Timing ranges above 500 seconds are not MIL qualified.

[^3]: ${ }^{*} 1 \mathrm{NO}+1 \mathrm{NC}$ auxiliary contact ${ }^{* *} \pm 20 \% @ 25^{\circ} \mathrm{C} \dagger 2 \mathrm{PDT}$ auxiliary contact. May be associated with a Hall current sensor $\dagger \dagger$ Refer to document RTCA/DO-160

